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ABSTRACT

During the 1980's the Pareto distribution began to displace the lognprmal 

distribution as a model for oil and gas accumulation-size distributions. 

Adoption of the Pareto distribution was independent of the study of fractals; 

however, the Pareto distribution is the probability distribution uniquely 

characteristic of fractals. The difference between the lognormal and Pareto 

distributions can be extremely significant in that the estimates of resources 

are higher for the Pareto than for the lognormal distribution. The Pareto 

distribution is a fractal probability distribution that has a power-law form 

with two important scaling (self-similar) properties: scaling under lower 

truncation and asymptotic scaling under addition. The objective of this paper 

is to establish the Pareto distribution as a model for petroleum 

accumulation-size distributions in the context of fractals. We present 

insights about petroleum accumulation-size distributions gained from fractal 

properties of the Pareto distribution.



INTRODUCTION

This paper is about probability modeling of petroleum accumulation-size 

distributions. In the 1980's fractals became widely known, and the Pareto 

distribution began to displace the lognormal distribution as a model for 

petroleum accumulation-size distributions. Adoption of the Pareto 

distribution was independent of, and seemingly unrelated to, the study of 

fractals; however, the Pareto distribution is the probability distribution 

characteristic of fractals (Mandelbrot, 1982). The objective of this paper is 

to establish the Pareto distribution as a model for oil and gas field-size 

distributions in the context of fractals. The Pareto distribution is related 

to fractals because it has a power-law form with two important scaling 

(self-similar) properties: scaling under lower truncation and asymptotic 

scaling under addition. The fractal approach is used to further substantiate 

the application of the Pareto distribution as a model for oil and gas 

accumulation-size distributions. In this paper, we examine the two fractal 

properties of the Pareto distribution with respect to petroleum accumulation 

sizes. This provides insight into the economic truncation observed in oil and 

gas accumulation-size distributions. The fractal approach also yields a new 

quantitative description of petroleum accumulation-size distributions.

Three decades ago, the Pareto and lognormal distributions were first 

introduced separately and virtually simultaneously as probability models for 

petroleum field-size distributions. Kaufman (1962) proposed the lognormal 

distribution, while Mandelbrot (1962) proposed the Pareto distribution. 

Mandelbrot advocated the Pareto distribution more than a decade before his 

development of geometric fractals.



FRACTALS

A fractal is an object made of parts similar to the.whole in some way; 

either exactly the same except for scale or statistically the same. The 

concept underlying fractals is self-similarity or scaling, that is, invariance 

against changes in scale or size (scale invariance).

Fractal relationships are of the form:

number = prefactor x (quantity) ^

where the exponent is a fraction. In many natural systems one encounters 

different power-law expressions of this form. Taking logarithms produces the 

linear relationship

log(number) = log(prefactor) + [exponent x log(quantity)]. 

Solving for the exponent gives

exponent = log(number)/log(quantity) - log(prefactor)/log(quantity).

There are two major types of fractals: geometric fractals and 

probabilistic fractals. Geometric fractals are geometric shapes that have 

fractional dimension. Probabilistic fractals are random variables, or 

equivalently probability distributions, that are self-similar (scale 

invariant). As will be shown below, the probability distribution 

characteristic of fractals is the hyperbolic law, which is defined to be 

either the Pareto law (continuous case) or the Zipf law (discrete case). The 

overview of fractal power laws set out above is summarized in a Venn diagram 

(figure 1). This paper is primarily concerned with the Pareto distribution; 

however, the geometric aspect of fractals is introduced next to establish a 

concept of self-similarity.
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Figure 1. Venn diagram of fractal power laws. Showing relationships:
fractals are a subset of all power laws; fractals include geometric 
shapes that have fractional dimension and random variables that are 
hyperbolic. Geometric shapes comprise length, area, and volume. 
Hyperbolic distributions comprise Pareto and Zipf laws.



Geometric Fractals

A geometric fractal is a geometric shape (pattern) that has two 

fundamental properties:

1. Self-similar (scale invariant), either exactly or statistically.

2. Fractional dimension.

A coastline is an often cited example of a statistically fractal pattern 

(Mandelbrot, 1982; Feder, 1988). Determination of the size scaling of a 

coastline requires measurement of its length. If the coastline is fractal, 

its length will increase as a power-law function of the size of square boxes 

or straight-line segments needed to cover it. The power law is of the form

, N(8) = A8~° 8 > 0 where

N(8) = number of "boxes" (8x8 squares) or straight-line segments

needed to cover the coastline as a function of 8, 

8 = side-length of square box or line segment, 

D = fractal dimension (fraction > 0), 

A = constant of proportionality (prefactor parameter). 

Taking logarithms of the power-law equation, we have

log N(8) = log A - D log 8

A plot of log N(8) versus log 8 produces a straight line with negative slope 

(-D). The fractal dimension of coastlines has been found to range from 1.1 to 

1.3 (Mandelbrot, 1982). The dimension, D, estimated by counting the number of 

boxes needed to cover the pattern as a function of the box size, is called the 

box counting dimension.

The fractal approach to geometric patterns introduces concepts and 

principles for the probabilistic side of fractals.



Probabilistic Fractals

A random variable that has a hyperbolic distribution, i.e., a hyperbolic 

random variable, is a probabilistic fractal. Thus, a hyperbolic distribution 

is a fractal distribution. A hyperbolic distribution is either a Pareto 

distribution (continuous case) or a Zipf distribution (discrete case). The 

Pareto distribution is a continuous probability distribution that is defined 

over a continuous sample space, e.g., petroleum accumulation sizes. The Zipf 

distribution is a discrete probability distribution that is defined over a 

countable sample space, e.g., word lengths.

Pareto's Law (Pareto, 1897) was developed to describe the distribution of 

personal annual income, random variable X, over a population and can be stated 

as a power law in the following form:

N(x) = Ax~a x > 0 

where

N(x) = number of persons having annual income > x (cumulative frequency), 

x = annual incomes (values of random variable X), 

a = shape parameter called Pareto's constant or exponent (real number

> 0),

A = constant of proportionality (prefactor parameter). 

Taking logarithms, we have the linear equation

log N(x) = log A - a log x 

The Pareto complementary cumulative distribution function of X is

( . -a 
P(X > x) = (£1 a > 0, x > k > 0

where k is a scale parameter.



The Pareto probability density function of X is

aka . . . . .
a>0, x>k>0

x 

Note that f(k) = a/k. Two comparative shapes of the Pareto density function

f(x) are shown in figure 2 for shape parameter a = 1 and a = 2. 

The expected value or mean of X is

E(X) = 1^- if a > 1
3   -L

The variance of X is

ak2 
V(X) =            if a > 2

(a-l) 2 (a-2)

For a < 1, E(X) does not exist, and for a < 2, V(X) does not exist.

Four disparate nongeological examples of data sets that when plotted on 

axes with logarithmic units, the hyperbolic distributions fit to the data sets 

plot as straight lines:

(a) The populations within plant genera plotted against the number of genera 

with at least such populations (Willis, 1922).

(b) The number of journal articles published plotted against the number of 

scientists publishing at least that many (Lotka, 1926).

(c) Word length in the English language plotted against the usage of words of 

at least that word length (Zipf, 1949).

(d) The frequencies contained in a cardiac pulse plotted against the 

occurrence of at least those frequencies (Goldberger et al., 1985).



Figure 2. Two comparative shapes of the Pareto probability density function 
f(x) for shape parameter a = 1 and a = 2.



Scaling (Self-similar) Probability Distributions

Mandelbrot (19&2) defined scaling of a random variable or probability 

distribution as follows: A random variable X is scaling (self-similar) under 

the transformation T(X) if the probability distributions of X and T(X) are 

identical except for scale. Transformation is used in a broad sense. For 

example, the summation of n independent, identically distributed random 

variables is viewed as a transform of the common X, and the corresponding 

variables are called scaling under addition. Scaling under two types of 

transformations for the Pareto distribution are important: (1) scaling under 

lower truncation, and (2) asymptotic scaling under addition. 

1. Scaling under lower truncation.

Mandelbrot (1966) found that the Pareto distribution possesses the 

fractal property of scaling under lower truncation. This can be shown by 

conditioning the Pareto complementary cumulative probability distribution with 

truncation at k/ where 0 < k < k' < x. We obtain

P(X > x|X > k') = (x/k) = (x/k')~a x > k' 
(k'/k) a

which is itself a Pareto distribution with scale parameter k'. Thus, the 

original Pareto distribution is self-similar (under lower truncation).

An important additional property of the conditioned or truncated variable 

is that it is scale-free in the sense that its distribution does not depend 

upon the original scale parameter k (Mandelbrot, 1966). Conversely, this 

property characterizes the Pareto distribution (and the Zipf distribution in 

the discrete case). A proof can be found in Mandelbrot (1966, 1982). The 

proof begins with the necessary condition for being scale-free under 

truncation which, when satisfied, implies the Pareto distribution:
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P(X > x|X > k') = P(X > cx|X > ck')

where c is any positive number. The hyperbolic distribution is the only 

distribution such that the rescaled truncated variable has a distribution 

independent of c.

An application of the above properties of the Pareto distribution would 

be to obtain the original Pareto distribution from knowledge of the shape 

parameter of a lower truncated Pareto distribution and an estimate of the 

original scale parameter. This will be illustrated in an example below when 

we estimate the distribution and parameters of the parent (original) 

population of oil and gas fields in a play from an economically truncated 

field-size distribution.

The effect of truncating at k' a Pareto distribution with original scale 

parameter k can be graphically demonstrated by comparing the original Pareto 

and the lower truncated Pareto with respect to their probability density 

functions. Plotted in figure 3 are two probability density functions with 

shape parameter a = 1.

i. Original Pareto with scale parameter k

f(x) = k/x2 x > k 

ii. Lower truncated Pareto with scale parameter k' = 2k

f(x) = k'/x2 = 2k/x2 x > 2k

In figure 3 the original Pareto and the lower truncated Pareto 

probability density functions have the same total area of unity under their 

respective curves. The lower truncated Pareto curve has twice the height of 

the original Pareto curve where x > 2k.



H 1/k
CO
2 
w
Q

M l/2k
CQ 
< 
CQ 
O

original 
Pareto

2k

lower
truncated
Pareto

3k 4k

Figure 3. Scaling under lower truncation of the Pareto probability density 
function (a = 1) with scale parameter k becoming k' = 2k.
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2. Asymptotic scaling under addition.

Asymptotic scaling was also defined by Mandelbrot (1982). For many 

transformations, invariance requires an asymptotically hyperbolic 

distribution. This means that there must exist an exponent a>0 such that

lim _, P(X < x)xa and lim _, P(X > x)xa - -

are defined and finite, and one of the limits is positive. Note that here the 

random variable X exceeding a large value x (right tail) is approximately 

hyperbolically distributed. Hyperbolic distributions invariant under addition 

are only asymptotically hyperbolic. The hyperbolic distribution plays a key 

role in nonstandard central limits. Note that asymptotic scale invariance 

under addition concerns the right side (tail) of the distribution.

Mandelbrot (1960) gives an alternative formulation of the asymptotically 

hyperbolic distribution. The asymptotic form of the Pareto distribution is

-a
P(X > x) - (*) as x -»

This implies that if log P(X > x) is plotted against log x, the resulting 

curve should be asymptotic to a straight line with slope equal to -a as x 

approaches infinity. It has been shown (Levy, 1925) that there is a class of 

distributions which follows the asymptotic form of the Pareto distribution and 

is characterized by 0 < a < 2. For economists concerned with the right tails 

of distributions, the Pareto distribution is probably more useful than the 

lognormal distribution, which generally gives a poor fit in the tails 

(Aitchison and Brown, 1957).

11



Mandelbrot (1960, 1963, 1964, 1967) used the Pareto distribution and its 

asymptotic form to explain many empirical phenomena. The Mandelbrot papers 

address a class of distributions termed "stable Paretian." Johnson and Kotz 

(1970) discuss various classes of the Pareto distribution.

West and Shlesinger (1990) discuss scale invariance of the hyperbolic 

distribution (they use the equivalent terms "inverse power-law distribution" 

and "1/f distribution") in the context of noise in natural phenomena. Although 

not stated, they deal with asymptotic scale invariance under addition of the 

hyperbolic distribution. They point out that the procession from the normal 

distribution to the lognormal distribution, and on to the Pareto distribution 

(a 1/f distribution) is one of increasing complexity in a system containing 

many independent random components. They state that as lognormal systems 

become even more complex, their distributions become broader and take on more 

of the qualities associated with a power-law distribution. This means that 

increasingly complex lognormal phenomena take on more of the fractal, or 

scale-invariant, characteristics of systems governed by power laws.

Petroleum (oil or gas) accumulation size is determined by the interaction 

of multiple and complex multiplicative geologic processes. The size of an oil 

or gas accumulation is a function of many geologic variables that can be 

treated as random variables in a set of petroleum engineering reservoir 

equations (Garb and Smith, 1987). Thus, petroleum accumulation size is a 

random variable that is a transformation of the product of many geologic 

random variables that are themselves functions of other multiplicative 

geologic processes.

12



It is possible that an argument similar to the one by West and Shlesinger 

can be used to show that petroleum accumulation-size distributions have the 

heavier tail of the Pareto distribution. That is, petroleum accumulation size 

possesses the fractal property of asymptotic scaling under addition. Further 

work needs to be done to show this, and a more rigorous approach needs to be 

used than the one by West and Shlesinger. This is an area for future work.

PETROLEUM ACCUMULATION-SIZE DISTRIBUTIONS 

Mandelbrot's Approach

Mandelbrot (1962) was the first to point out that the size distributions 

of oil, gas, and mineral resources can be modeled with the Pareto 

distribution. He fit the Pareto distribution to the cumulative frequency of 

oil field areas (figure 4) and the cumulative frequency of their total 

ultimate recovery (figure 5), i.e., the sums of the total production and of 

the currently estimated reserves. He also fit the Pareto to total capacity 

valuations estimated for several gold, uranium, and pyrite mines in South 

Africa, for flood levels of rivers, and for glacial varve thicknesses.

The data in figure 4 are cumulative Paretian, i.e., they are doubly 

logarithmic plots of the numbers of oil fields, in the entire U.S. and in 

Texas alone, having an area greater than a given number of acres. The data 

are from The Oil and Gas Journal (1958). The smaller fields, those producing 

between 1000 and 3000 bbl. per day, are included in the data for all states 

except Texas. The data points are fit by a straight line with negative slope 

and Pareto's exponent of 1.3. Mandelbrot's data (1958) were less 

representative than the data we work with today (see figure 6); the range of

13
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exponents for updated data for plays, basins, and continent-size areas is 

between 0.81 and 1.08 (Barton and Scholz,-this volume).. ;

Mandelbrot (1962) plotted cumulative Paretian graphs for the estimated 

ultimate recovery (figure 5 USA 1948-1955), i.e., the sum of the cumulated 

production and of the estimated reserves. The data are from McKie (1960) and 

The Oil and Gas Journal (1958). He noted that the Paretian exponent may be 

slightly larger than for USA on figure 4; but, he continued, if one takes into 

account the enormous size of the largest U.S. field, figures 4 and 5 may 

exhibit the same exponent. The nearly parallel slopes 1.3 and 1.4 suggest 

that the size distribution of oil deposits is Pareto-scaling overall and for 

small subsets of the data. A cumulative Paretian plot was also made by 

Mandelbrot for the reserves of a sample of gas fields discovered during 

1947-1951.

Mandelbrot (1962) also comments on the use of the lognormal distribution 

in the literature of geostatistics. He states that his use of the Pareto 

distribution contradicted what had been the prevailing view that the size 

distributions of natural resources follow the lognormal law. He points out 

that the fit of the lognormal distribution is poor, both graphically and from 

the viewpoint of predicted values, and he does not believe that the lognormal 

law can be rendered appropriate by changes such as those proposed in Krige 

(1960).
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Goldberg's Approach

Truncated Pareto distributions, with a lower limit (k) as well as an 

upper limit (t), have been found by Goldberg (1967) to fit the size 

distribution of oil fields. An upper truncated Pareto distribution has 

density function

f(x> = ^ [i - (t/krv1 k < x < t
x 

and complementary cumulative distribution function

P(X > x) = [(x/k)~a - (t/k)~a ] [1 - (t/k)"3 ]" 1 k < x < t

The lower limit, k, corresponds to the minimum field size, and the upper 

limit, t, corresponds to the maximum field size. The population moments of 

the upper truncated Pareto distribution always exist. 

Kauf man's Approach

Despite the work of Mandelbrot and Goldberg, the prevailing view has been 

that petroleum field sizes are lognormally distributed. The difference 

between the lognormal and Pareto distributions can be extremely significant, 

in that the estimates of resources are higher for the Pareto than for the 

lognormal distribution. Kaufman (1962 and Kaufman et al. , 1975) lias been the 

main proponent for the application of the lognormal distribution as a model 

for the parent population of oil and gas field sizes. Kaufman' s approach is 

largely theoretical (probability theory) in deducing attributes from specified 

fundamental assumptions. A review of arguments for selecting the lognormal 

law is presented in Crovelli (1984).

17



Recent Approaches

Recently, the. lognormal distribution has been questioned because 

empirical analyses of field-size data suggest the use of a J-shaped 

distribution (a Pareto-type distribution) as a model of the sizes of oil and 

gas fields. The lognormal shape of the observed size-frequency distribution 

of oil and gas fields is considered to be an artifact of the discovery 

process, a consequence of an economic truncation or filtering process (Drew et 

al., 1982; Schuenemeyer and Drew, 1983; Attanasi and Drew, 1985). Houghton 

(1988) used a truncated shifted Pareto distribution to model size distribution 

of oil and gas fields. The latest assessment of U.S. petroleum resources by 

the U.S. Geological Survey (Mast et al., 1989) applied a modified Houghton 

model. Drew (1990) gives an interesting presentation on the lognormal debate. 

He reviews how and why the lognormal distribution came to be so widely 

accepted as a model for the parent population of oil and gas fields. Drew 

uses the empirical approach of applied statistics based upon the Arps-Roberts 

(1958) model. He concludes that the underlying parent population of oil and 

gas fields in any region is distributed as a log-geometric distribution. This 

distribution belongs to the family of distributions that is commonly known as 

"J-shaped," or Pareto. 

EXAMPLE

The choice of the probability distribution deemed appropriate to fit the 

size distribution of oil accumulations has evolved over the past 30 years as 

exploration and development have provided additional data. This development 

is graphically illustrated in figure 6 (from Drew, 1990).

18
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Figure 6. Observed field-size distribution for the Frio Strandplain play, 
onshore Texas. The distribution has three segments representing the 
cumulative number of fields discovered through the specified year (from 
Drew, 1990).
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Based on the data through 1960, a normal distribution would be a 

reasonable fit to the observed field-size distribution for the'Frio 

Strandplain play, onshore Texas. Through 1970, a lognormal distribution could 

be considered a good model for the observed distribution. We propose that the 

data through 1985 are appropriately fit by a fractal (power law) or Pareto 

distribution since we are actually interested in modeling the ultimate or 

parent distribution and not simply the observed distribution.

A fractal distribution is scale invariant and exactly or approximately 

obeys a power-law (size cumulative-frequency) relation, with a fractional 

exponent. Thus, if the size distribution of petroleum accumulations is 

fractal, the number of accumulations of volume V > v, N(v), would obey a 

relation of the form

N(v) = Av~a v > 0 

where the exponent, a, is the shape parameter of the Pareto distribution.

Our choice of the fractal distribution is based on our observation (also 

noted by Drew, 1990) that there is a shift and increase of the size frequency 

of discoveries to the left with time (figure 6). There is almost no change in 

the shape of the distribution for field-size classes greater than eleven, and 

future growth in the larger size classes is not expected to be significant. 

For size classes less than or equal to eleven, the distribution is strongly 

affected by economic factors that limit the discovery and development of 

field-size classes smaller than twelve. So we fit only that part of the 

distribution greater than size class eleven.

The data through 1985 (figure 6) for field-size classes (in million 

barrels of oil equivalent) greater than eleven are plotted on the log-log plot

20



in figure 7 and are fit by a straight line whose negative slope, -a, is -0.83, 

i.e., Shape parameter, a, is 0.83. A correlation coefficient of -0.97 

indicates a good fit where -1.0 is a perfect negative fit. We propose that 

this is an appropriate though approximate fit to the data and that 

extrapolation of the line to smaller field sizes may be a valid basis for 

prediction of the ultimate undiscovered petroleum in field-size classes less 

than or equal to eleven.

/" 

CONCLUSIONS

1. The Pareto probability distribution is a fractal distribution that yields 

a reasonably good fit to the data for oil and gas accumulation-size 

distributions.

2. The scale invariance under lower truncation of the Pareto distribution 

permits characterization of economic truncation on the left side of the 

petroleum accumulation-size distribution. This fractal property enables the 

parent population to be determined from an economically truncated field-size 

distribution.

3. The asymptotic scale invariance under addition of the Pareto distribution 

might be representative of the complexity of the geologic multiplicative 

processes determining the oil and gas accumulation sizes.

4. The Pareto cumulative distribution is most usefully described by a 

straight line with negative slope on a log-log plot.

5. The absolute value of the slope of the straight line on a log-log plot is 

an estimate of the shape parameter or Pareto's exponent and provides a useful 

quantitative measure for comparing petroleum plays.

21
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6. The upper truncated Pareto distribution is also used as a model for 

petroleum accumulation-size distributions since the largest accumulation -is 

usually discovered early in the exploration process. This distribution has 

the important property that its moments always exist.
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SELECTED NOMENCLATURE (in order of occurrence in text)

N(&) * . . . = number of "boxes" (6 x 6 squares) or straight-line

segments needed to cover the coastline as a function of 6 

& = side-length of square box or line segment (real number >

0)

D = fractal dimension (fraction > 0) 

A = constant of proportionality (prefactor parameter) 

X = random variable (e.g., personal annual income over a

population) 

x = values of random variable X (e.g., annual incomes; real

numbers > 0) 

N(x) = number of persons having income > x (cumulative

frequency) 

a = shape parameter called Pareto's constant or exponent

(real number > 0) 

P(X > x) = probability that random variable X takes on a value at

least x (complementary cumulative probability

distribution function of X)

k = scale parameter of the Pareto distribution 

f(x) = Pareto probability density function of X 

f(k) = Pareto probability density function evaluated at k 

E(X) = expected value or mean of X 

V(X) = variance of X

24



T(X) = random variable that is a transformation of the random

  variable X 

P(X > x|X > k') = probability that random variable X takes on a value at

least x, given that X is at least k'

k' = rescaled truncated value (0 < k < k' < x) 

P(X > cx|X > ck' ) = probability that random variable X takes on a value at

least ex, given that X is at least ck' 

c = any positive number (c > 0) 

limx^oo P(X < x)xa = limit of P(X < x)xa as x -» « 

lim P(X > x)xa = limit of P(X > x)xa as x -» «

(x\~a -a
P(X > x) ~ i- = P(X > x) is asymptotically equal to (x/k) as x  » °° 

Uw
as x -> <»

V = volume or size of petroleum accumulation in play (a

random variable) 

v = numerical volumes or sizes of petroleum accumulations

(values of V) 

N(v) = number of petroleum accumulations having volume or size

> v (cumulative frequency)

25
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